If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2=35
We move all terms to the left:
49x^2-(35)=0
a = 49; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·49·(-35)
Δ = 6860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6860}=\sqrt{196*35}=\sqrt{196}*\sqrt{35}=14\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{35}}{2*49}=\frac{0-14\sqrt{35}}{98} =-\frac{14\sqrt{35}}{98} =-\frac{\sqrt{35}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{35}}{2*49}=\frac{0+14\sqrt{35}}{98} =\frac{14\sqrt{35}}{98} =\frac{\sqrt{35}}{7} $
| 4(x-4)+20-(3(x)=0 | | 2d-5=8d+13 | | 4(x-4)+20=3(x=3) | | 16.5=13.5+5c | | n-5=13-5n | | 15x-(5x-7)=47 | | x2=25729 | | 134=-7(7n-4)-4n | | 3*20+7*x=$165 | | 4-7x+10=15-6x-6 | | -7x+18=-2(3x-2)+6 | | 3x-6=-8(2x-4) | | 8+9r=8 | | 4/x-1+6/3x+1=13/3x+1 | | -7(-a+4)=-84 | | 2x+5+2x+8=83 | | 1/22x=10x-9.5 | | -8-0.5y+2y=-8 | | 4x+1.5=3x−3+2. | | 1x+2x+3x-12=180 | | -8-1/2y+2y=-8 | | 3z=5.1 | | 5(6n-4)=-230 | | 2g+3(-7+4g=1-g | | 5/2x+1-8x/2x-1=-4 | | 17x+7=9x | | 13=3u-8 | | 3^2x+1-28*3^x+27=0 | | x+1/3=81/4 | | 1+6(4v-2)=109 | | 4-7n-6=-(8n+4)+2+n | | (-7a+6)=-16-7a |